Reinvestigation of the LuFeO₃(ZnO)_m Homologous Series: Insights from Charge Distribution Analysis on the Effect of the Coordination Polyhedra Shape on the Cation Distribution

Massimo Nespolo, Masaki Nakamura, and Haruo Ohashi

National Institute for Research in Inorganic Materials, Research Center for Creating New Materials, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan

Received August 3, 1999; in revised form October 20, 1999; accepted October 22, 1999

A previous report on the homologous series LuFeO₃(ZnO)... (m = 1, 4, 5, 6) is reanalyzed in terms of the charge distribution (CD) approach, an alternative to the bond valence method, which exploits the geometry of the coordination polyhedra. It is shown that in the m = 1 member the octahedral site is not well balanced; besides, members m = 4, 5, 6 are well balanced only assuming that Fe³⁺ avoids the cation site next to Lu. The main reason for these effects is likely in the shape of the trigonal bipyramids hosting Fe and Zn. The polyhedron next to the Lu site is highly distorted, with the three basal M-O distances midway between those of the two apical ones. This geometry, approaching the tetrahedral shape, is more suitable for hosting Zn than Fe; besides, the short apical M-O distance results in enhancement of the intercationic (Lu–M1) repulsion. For members m > 1 such repulsion is likely avoided by distributing the trivalent cation into the m-1 trigonal bipyramids not directly bound to the octahedron. The m = 1 member contains only one trigonal bipyramid and cannot thus adopt the same scheme of cation distribution. As a result, Lu is probably shifted outside the center of symmetry. A new refinement of the m = 1 member, based on the original intensities, shows that Lu is displaced by ± 0.14 Å from the center of symmetry. With respect to the refinement in the central atom model, a lower R factor, a lower Fourier difference and thermal parameters have been obtained. The results of the present research suggest the Lu-Fe³⁺ repulsion, related to the asymmetry of the trigonal bypiramidal coordination of Zn/Fe, as a possible cause of the deviation from the average structure. © 2000 Academic Press

Key Words: charge distribution; homologous series; splitatom model.

INTRODUCTION

Isobe *et al.* (1) investigated the structure of the LuFeO₃(ZnO)_m homologous series (m = 1,4,5,6) by singlecrystal X-ray diffraction (XRD), as part of a project aimed at determining the phase diagrams of oxides with relevant electronic properties. This series of compounds belongs to the so-called *accretional homologous series*, i.e., series in which the type(s) and the general shapes of building blocks, as well as the principles defining their mutual relationships, are preserved, but the size of these blocks increases with the number of coordination polyhedra in them (2). The members of this accretional homologous series are based on the YbFe₂O₄ structure (3) and consist essentially of the close packing of O atoms, with Lu in the octahedral voids and Fe/Zn in trigonal bipyramidal coordination. From the structure refinement, the displacement parameters U_{33} of Lu and O(1) of the m = 1 member were abnormally high. A refinement adopting the split-atom model for Lu was attempted and gave uncertain deviations, although with a lower R factor, and the average structure was accepted (1). For m > 1 members, the distribution of Fe³⁺ in the trigonal bipyramidal sites could not be determined on the basis of the R factor (1).

More recently, a neutron powder diffraction study of LuFeO₃(ZnO) (4) has indicated that the split-atom model, rather than the central-atom model, better describes the structure. In this research we present the charge distribution (CD) analysis (5, 6) (a method used to calculate the bond strengths on the basis of the geometry of the coordination polyhedra) of the accretional homologous series (1) and a new refinement of the m = 1 member, using the original intensities collected by Isobe *et al.* (1), which confirms the displacement of Lu from the center of symmetry.

DESCRIPTION OF THE STRUCTURE OF THE LuFeO₃(ZnO)_m ACCRETIONAL HOMOLOGOUS SERIES

The structure of the LuFeO₃(ZnO)_m accretional homologous series can be rationalized by writing m as a function of two integral numbers, K and L, as

$$m = 2K + L, \qquad [1]$$

where $K \ge 0$ and L = 0 or 1. Members with L = 1 belong to space group $R\overline{3}m$; those with L = 0 to space group

 $P6_3/mmc$. Differently from the previous classification in terms of the parity of m (odd m, $R\overline{3}m$; even m, $P6_3/mmc$; (1)) Eq. [1] gives a general scheme for the coordination polyhedra. In all the members of the accretional homologous series, the Lu atom is in octahedral coordination, and the Fe/Zn atoms are in trigonal bipyramidal coordination (Msites). The number of M sites is K + 1, and the number of crystallographically independent oxygen atoms is K + 2. Lu is octahedrally coordinated by the (K + 2)th oxygen, whereas the *i*th M site is coordinated by the oxygen atoms of types i - 1, i, and i + 1 [only O(1) and O(2) for M1], M_i -O_i being the basal bonds (in number of three). The M site adjacent to the Lu sheet is the (K + 1)th one (hereinafter labeled M_{K+1} ; the octahedral site and the M_{K+1} site share the (K + 2)th oxygen atom (hereinafter labeled O_{K+2}), which forms the shortest of the two apical bonds of the trigonal bipyramid.

In all but the m = 6 member, the trigonal bipyramid around M_{K+1} is highly distorted, having the apical $M_{K+1}-O_{K+2}$ bond shorter and the other apical $M_{K+1}-O_K$ bond longer than the three basal $M_{K+1}-O_{K+1}$ bonds (this is equivalent to saying that the cation is significantly displaced from the basal plane). The same distortion was reported in several compounds isostructural with the m = 1 member of the series, YbFe₂O₄ (3), LuFe₂O₄ and LuFeCoO₄ (7), InCuAlO₄ (8), Yb_{0.5}Eu_{0.5}Fe₂O₄ (9), and also in a recent powder neutron diffraction study of the same compound, LuFeZnO₄ (4).

CHARGE DISTRIBUTION ANALYSIS

The charge distribution (CD) method (5) is the most recent development of the classical theory of bond strength (10). The latter was introduced as an empirical method to discuss the chemical bonds around each cation in an experimentally determined structure, by assigning to each bond a "bond strength" corresponding to the ratio of the formal oxidation number to the coordination number.

The bond strength approach was further developed to treat nonionic bonds (and thus the words "cations" and "anions" have to be considered in their purely formal meanings, indicating simply the sign of the formal oxidation number, and not necessarily the presence of an ionic bond) and relatively distorted coordination polyhedra by employing the so-called Rs curves, i.e, empirical curves giving the bond strength (s) as a function of the bond lengths (R). Several kinds of Rs curves have been introduced (e.g., 11-14), all containing two or more empirical parameters obtained by fitting on a large set of well-refined structures. The bond strength computed employing the Rs curves is called *bond valence*, and the theory that aims to interpret the chemical bonds on the basis of the Rs curves is itself called bond valence (BV) theory (15). The empirical parameters used in the BV theory depend upon the cation-anion pair and the experimental conditions (pressure, temperature) in which they have been derived. The "charge" (Q) of each cation and anion is *computed* as the sum of the bond valences.

On the other hand, the CD employs a single empirical parameter, which is characteristic of the anion (to date, this parameter has been refined only for the oxygen) and does not depend upon either the cation or the experimental conditions. The CD exploits the experimental bond distances to compute a noninteger coordination number (ECoN: effective coordination number) and distributes the formal oxidation number (q) of each atom among all its bonds as a function of ECoN. It is thus more related to the geometry of each coordination polyhedron, rather than to the true crystal chemistry, as instead is the BV. Since the Q computed according to CD is the result of the *distribution* of q, it is suitable to investigate isomorphic substitutions of cations with different q: a distribution giving $Q \neq q$ indicates the possible presence of a mistake in the assigned site occupancy (6).

All these empirical methods should be always used critically, since they try to explain in a simple way the main features of something as complex as the chemical bond. However, in contrast to the BV method, the CD method possesses an internal criterion indicating the reasonableness of the analysis performed. In the BV theory, the Q obtained as a summation of the bond valences of each chemical bond is defined and computed in exactly the same way for both the cations and the anions. A deviation from q in principle measures the deviation from the "ideal" structure, and it is commonly used to discuss the presence and the possible causes of valence unbalances. However, this analysis is acceptable only if the structure is correctly solved, and only if it does not extend beyond the limits of applicability of the BV method itself (e.g., it does not contain polyhedra that are too distorted). The evaluation of applicability should be performed through an independent route, and before any discussion based on the bond valences is proposed. On the other hand, in the CD method the Q for the anions is computed by distributing q as a function of ECoN, whereas Q for the cations is computed by distributing the q/Q of the anions, again as a function of ECoN. It follows that even when q/Q(anions) is significantly different from 1, q/Q(cations) is expected to be close to 1 for the method to be applicable. A q/Q(cations) ratio significantly different from 1 suggests that the structure may not be completely refined (6).

In Table 1 the results of the CD analysis are given for the four known members of the LuFeO₃(ZnO)_m series. The deviation of Q with respect to q is rather high for the m = 1 member ($\sigma = 18.6\%$), as well as for the m = 4 member, when a trivalent cation is located in the M_{K+1} site ($\sigma = 14\%$). For the two other members the agreement is better (m = 5, $\sigma = 9.3\%$; m = 6, $\sigma = 8.6\%$). For m = 1, q/Q differs from

TABLE 1 Charge Distribution (5, 6) for the Accretional Homologous Series $LuFeO_3(ZnO)_m$, Computed on the Basis of the Refined Structures in (1)

т	Compound	Cation	q	Q	q/Q
1 <i>ª</i>	$LuFeZnO_4$ $\sigma = 0.186$	Lu Zn/Fe	3.00 2.50	2.83 2.58	1.06 0.97
4 ^{<i>a</i>}	LuFeZn ₄ O ₇ (1/5, 2/5, 2/5) $\sigma = 0.140$	Lu Zn/Fe Zn/Fe Zn/Fe	3.00 2.20 2.20 2.20	2.88 2.40 2.22 2.14	1.04 0.92 0.99 1.03
	LuFeZn ₄ O ₇ (1/3, 2/3, 0) $\sigma = 0.066$	Lu Zn/Fe Zn/Fe Zn	3.00 2.33 2.33 2.00	2.96 2.40 2.27 2.05	1.01 0.97 1.03 0.98
5 ^{<i>a</i>}	LuFeZn ₅ O ₈ (1/3, 1/3, 1/3) $\sigma = 0.093$	Lu Zn/Fe Zn/Fe Zn/Fe	3.00 2.17 2.17 2.17	2.88 2.27 2.17 2.13	1.04 0.96 1.00 1.02
	LuFeZn ₅ O ₈ (1/2, 1/2, 0) $\sigma = 0.054$	Lu Zn/Fe Zn/Fe Zn	3.00 2.25 2.25 2.00	2.94 2.27 2.21 2.06	1.02 0.99 1.02 0.97
6	LuFeZn ₆ O ₉ (1/7, 2/7, 2/7, 2/7) $\sigma = 0.086$	Lu Zn/Fe Zn/Fe Zn/Fe Zn/Fe	3.00 2.14 2.14 2.14 2.14	3.05 2.28 2.17 2.10 2.07	0.98 0.94 0.99 1.02 1.04
	LuFeZn ₆ O ₉ (1/5, 2/5, 2/5, 0) $\sigma = 0.073$	Lu Zn/Fe Zn/Fe Zn/Fe Zn	3.00 2.20 2.20 2.20 2.00	3.10 2.28 2.17 2.13 2.01	0.97 0.97 1.01 1.03 1.00

Note. Numbers in parenthesis below the chemical formula represent the fractional occupations of the *M* sites; $\sigma = \left[\sum_{i=1}^{N} (q_i - Q_i)^2 / N - 1\right]^{1/2}$ measures the deviation of the computed "charges" (*Q*) with respect to the formal oxidation numbers (*q*).

"Structures with distorted trigonal bipyramid $(M_{K+1}-O_{K+2} < M_{K+1}-O_{K+1})$.

1 by 6% for the Lu site, but by only half that for the M1 (Fe/Zn) site: this suggests that some problems still remain in the structural determination of the Lu site. For the m = 4 member, when disordered Fe/Zn distribution is assumed, the highest deviation (8%) is for the M1 site, followed by Lu (4%). Assuming only Zn in the M3 site, a significant improvement (reduction to 3 and 1%, respectively) is obtained. For m = 5, assuming no Fe in the M3 site, a general improvement is again obtained, whereas for m = 6 the indications are less clear. In the m = 1, 4 and 5 members, the trigonal bipyramid around M_{K+1} is distorted $(M_{K+1}-O_{K+2} < M_{K+1}-O_{K+1})$ and approaches the tetrahedral shape, whereas it is more regular for the m = 6 member. The improved charge distribution obtained when the trivalent cation avoids the polyhedron next to the Lu

octahedron seems thus related to the existence of distorted polyhedra midway between tetrahedra and trigonal bipyramids. The Zn is known to prefer a tetrahedral coordination (16): the distorted M_{K+1} is thus likely to be preferentially occupied by Zn, leaving Fe distributed among the other M_K sites. Besides, entrance of Fe³⁺ in the distorted M_{K+1} , which shares O_{K+2} with the Lu octahedron and has $M_{K+1}-O_{K+2}$ as the shortest of the five M-O distances, would likely produce a Lu-Fe repulsion, which would not occur in an undistorted bipyramid. The Lu in the octahedral site can thus tend to prevent the entrance of a trivalent cation in the neighboring M_{K+1} site.

For the m = 1 member, since there is only one M site, no site preference for Zn is possible, and the Lu-Fe³⁺ repulsion cannot hinder Fe³⁺ from entering there. In order to reduce the repulsion, the Lu may thus be displaced from the center of symmetry. This appears as a large U_{33} factor for Lu and high positive and negative values of the Fourier difference around the center of symmetry. This hypothesis is supported by a recent neutron study of the same compound (4), in which the structure could be correctly refined only by adopting the split-atom model for Lu.

REVISED REFINEMENT OF THE LuFeZnO₄ STRUCTURE

To test the hypotheses described in the previous section, we have re-refined the LuFeZnO4 structure starting from the original intensities collected by Isobe et al. (1). For the description of synthesis and starting materials see (1, 17). The m = 1 member was chosen as the most significant test structure because of the sharing of the M_{K+1} site by Fe and Zn. Intensities had been collected in the $R\overline{3}m$ asymmetric unit; however, re-examination of the original file revealed that, different from what was reported by Isobe et al. (1), data collection was not performed in the $(0 \le h \le 7;$ $0 \le k \le 7$; $0 \le l \le 61$) region but in the $(0 \le h \le 4;$ $0 \le k \le 7$; $-61 \le l \le 60$) one. Isobe *et al.* (1) transformed the indices from the second to the first region, and merged reflections that were on the border of the asymmetric unit. The refinement was then performed against F. We have kept the original indexing and used the whole set of data, to check the consistency of the equivalents. Six strong reflections (003, 006, 009, -129, -1212, -2412) are actually not consistent and give an $R_{int} = 0.0272$. The LP corrections were performed through the XCAD4 program (18), and the spherical absorption correction with the PLATON package (19). The structure refinement was performed against F^2 with SHELX-97 (20) (observed and calculated F are in Table 2. A first refinement with Lu on the center of symmetry (central-atom model) was performed, which gave an R1 similar to that obtained by Isobe et al. (1) (Table 3). In the Fourier difference, the highest peak was lower than that reported by Isobe et al. (1), but the deepest hole was higher. However, the locations of both the peak

 TABLE 2

 Observed and Calculted (Split-Atom Model) Structure Factors for LuFeZnO₄

h	k	l	$10F_{o}$	$10F_{\rm c}$	10 <i>s</i>	h	k	l	$10F_{o}$	$10F_{\rm c}$	10s	h	k	l	$10F_{o}$	$10F_{\rm c}$	10s	h	k	<i>l</i> 1	$0F_{o}$	$10F_{\rm c}$	10s	h	k l	$10F_{o}$	$10F_{\rm c}$	10 <i>s</i>
- 1	2	0	3175	3133	6	- 5	6	7	314	323	5	- 6	57	14	561	554	4	- 2	6 2	2	265	265	6	- 2	3 31	156	147	7
0	3	0	2071	2035	8	-2	6	7	338	346	5	- 3	37	14	619	630	4	— 4	7 2	2	227	222	6	— 4	2 31	70	113	69
- 2	4	0	1763	1752	8	- 7	7	7	230	230	5	() 7	14	484	491	3	- 1	7 2	2	194	200	6	- 1	4 31	121	123	10
- 1	5	0	1257	1244	6	- 4	7	7	295	285	5	- 5	58	14	484	491	3	C	1 2	3 1	347	1336	6	- 3	5 31	104	104	13
- 3	6	0	1042	1039	2	- 1	/	7	255	254	5	(15	1264	1308	4	- 2	22	3 1	142	113/	2	0	0 5 31	6/	89	66
_ 2	7	0	830 774	820 769	4	-3	ð 1	8	1535	230	5		1 2	15	819	822	8 4	- 1	3 2	3 1	794	992 701	3	- 3 - 2	6 31	38 31	83	30
_ 4	8	0	638	634	3	-2	2	8	1216	1212	5) 3	15	807	822	3		4 2	3	722	718	4	_ 4	7 31	0	68	1
- 1	1	1	2259	2287	5	- 1	3	8	1047	1036	5	- 2	24	15	725	737	2	- 5	5 2	3	571	558	4	0	1 32	559	568	3
0	2	1	1789	1759	6	- 3	4	8	813	819	4	_ 4	1 5	15	561	559	4	- 2	5 2	3	665	656	4	- 2	2 32	500	504	4
- 2	3	1	1453	1463	7	0	4	8	735	742	3	- 1	5	15	557	559	4	— 4	6 2	3	530	518	4	- 1	3 32	439	454	4
- 4	4	1	996	1004	4	- 5	5	8	594	575	4	- 6	66	15	392	392	5	- 1	6 2	3	480	483	4	- 3	4 32	366	377	5
- 1	4	1	1118	1119	5	- 2	5	8	680	678	3	- 3	6	15	465	479	3	- 6	72	.3	379	373	4	0	4 32	334	348	5
- 3	5	1	891	910	4	- 4	6	8	557	533	4	() 6	15	394	392	4	- 3	72	.3	418	422	4	- 5	5 32	279	279	5
0	5	1	769	764	4	- 1	6	8	493	496	4	- :	×7	15	369	368	4	0	02	4 1	075	1085	11	- 2	5 32	304	322	5
- 3	6	1	038 701	000 705	4	- 0	7	8 0	388 125	380 425	4	- 4	2 / I Q	15	209	212	4	- 1	2 2	.4 04	904 606	917 708	2	- 4	6 22	237	201	0 5
- 2	. 0	1	453	449	4	- 5	7	8	342	346	4	_ 1	+ 0 1	16	102	216	3	- 3	32	. 4 94	710	708	3	_ 3	7 32	242	245	5
_ 4	. 7	1	571	570	4	- 5	8	8	352	346	4	- 1) 2	16	199	227	4	_ 2	4 2	4	631	635	2	0	0 33	474	485	2
- 1	7	1	509	504	4	0	0	9	2765	2863	45	- 2	23	16	218	231	4	- 4	5 2	24	486	483	4	- 1	2 33	422	432	2
- 3	8	1	447	449	4	- 1	2	9	2239	2208	44	_ 4	4	16	214	214	5	- 1	5 2	4	488	483	4	- 3	3 33	354	354	4
0	1	2	221	262	2	- 3	3	9	1603	1558	7	- 1	4	16	234	223	5	- 6	6 2	.4	336	335	5	0	3 33	346	354	4
- 2	2	2	377	378	2	0	3	9	1611	1558	7	- 3	35	16	200	203	6	- 3	6 2	.4	410	413	6	- 2	4 33	312	325	3
- 1	3	2	377	407	3	-2	4	9	1370	1365	10	() 5	16	192	182	7	C	6 2	.4	340	335	5	— 4	5 33	262	260	6
- 3	4	2	386	400	3	- 4	5	9	1012	996	5	- 5	56	16	174	164	8	- 5	7 2	.4	320	314	4	- 1	5 33	262	260	6
0) 4	2	374	384	4	- 1	5	9	1006	996	5	- 2	26	16	175	172	8	- 2	72	24	314	314	5	- 6	6 33	194	190	6
- 5	5	2	309	327	5	-6	6	9	691	6//	4	4	17	16	156	149	8	- 1	12	5	53	36	17	- 3	6 33	236	228	4
- 2	6	2	333	300	4	- 5	6	9	670	677	4	- 1	1	17	747	732	0	2	3 2	5	43 77	30	45	1	1 3/	189 67	190	15
- - - 1	6	2	290	293	5	- 5	7	9	646	635	4	_ 2	$\frac{1}{2}$	17	684	621	3	_ 4	4 2	.5	38	48	38	- 1	1 34	61	6	60
- 6	7	2	234	242	6	- 2	7	9	635	635	4	- 1	3	17	624	551	3	- 1	4 2	:5	114	46	9	- 2	3 34	58	7	22
- 3	7	2	258	264	6	- 4	8	9	523	530	2	- 3	3 4	17	461	454	3	- 3	5 2	5	48	48	40	— 4	4 34	40	9	40
0	7	2	226	224	5	- 1	1	10	2208	2274	6	() 4	17	445	417	4	C	5 2	.5	81	48	16	- 1	4 34	72	9	72
- 5	8	2	214	224	6	0	2	10	1856	1796	7	- 5	5 5	17	344	330	5	- 5	6 2	5	36	47	36	- 3	5 34	0	9	1
0	0	3	1003	1039	16	- 2	3	10	1510	1504	7	-2	2 5	17	409	384	8	- 2	6 2	.5	56	48	56	0	5 34	36	10	35
- 1	2	3	883	874	8	- 4	4	10	1033	1033	5	4	6	17	311	307	5	- 4	72	.5	77	47	16	- 5	6 34	59	10	22
- 3	3	3	691	706	8	- 4	4	10	1164	1152	5	- 1	6	17	305	287	5	- 1	72	5	155	46	ļ	- 2	6 34	0	10	1
0		3	689	648	3	- 3	5 5	10	930 706	930 786	4	- 6	27	17	239	220	5	1	2 2	6	133	106	2 7	0	2 2 2 5	272	264	5
- 2 - 4	, 4 5	3	506	514	4	- 5	6	10	684	674	4		, ,) ()	18	1592	1563	10	- 2 - 1	3 2	.0 16	80	76	13	- 2 _ 1	3 35	239	204	6
- 1	5	3	512	514	4	- 2	6	10	727	726	4	- 1	2	18	1327	1304	4	_ 3	4 2	26	32	46	32	_ 3	4 35	162	165	8
- 6	6	3	365	369	5	- 7	7	10	451	461	4	_ 3	3 3	18	1005	988	5	C	4 2	.6	23	38	22	0	4 35	157	150	8
- 3	6	3	441	446	6	- 4	7	10	588	587	4	() 3	18	1020	988	5	- 5	5 2	.6	0	27	1	- 5	5 35	124	116	10
0	6	3	370	369	5	- 1	7	10	535	518	4	- 2	24	18	894	882	3	- 2	5 2	6	58	32	57	- 2	5 35	132	137	10
- 5	7	3	349	348	5	- 3	8	10	460	461	4	_ 4	15	18	679	666	4	— 4	6 2	.6	49	25	49	- 4	6 35	111	106	11
-2	7	3	338	348	5	0	1	11	434	456	2	- 1	5	18	1664	666	4	- 1	6 2	.6	0	24	1	- 1	6 35	81	98	15
- 4	8	3	302	299	4	- 2	2	11	451	463	2	- 6	56	18	468	466	4	3	72	6	0	24	1	0	0 36	0	70	1
- 1		4	2419	2479	5	- 1	3	11	438	450	3	- :	56	18	572	5/1	3	0	02	27	/15	693	10	- 1	2 36	107	67	25
0	2	4	2010	1969	6 7	- 3	4	11 11	394	408	3	4	57	18	451	400	4	- 1	2 2	./	608 404	485	2	- 3	2 36	40	61	45
- 2 - 4	. 3	4	11148	1132	5	- 5	4 5	11 11	336	319	5		, , , 7	18	440	439	4	- 3	32	./ 7	494	485	4	_ 2	4 36	121 59	59	59
_ 1	4	4	1316	1263	6	- 2	5	11	351	362	4	_ 1	1	19	1262	1257	6	_ 2	4 2	.7	443	441	3	_ 4	5 36	91	53	14
- 3	5	4	1017	1025	5	$-\frac{2}{4}$	6	11	295	301	5	() 2	19	1117	1087	5	- 4	5 2	.7	344	345	5	- 1	5 36	52	53	51
0	5	4	858	861	4	- 1	6	11	286	284	5	- 2	23	19	969	956	4	- 1	5 2	.7	349	345	5	- 3	6 36	0	50	1
- 5	6	4	737	739	4	- 6	7	11	221	233	6	_ 4	4	19	705	700	3	- 6	6 2	27	253	248	5	- 1	1 37	437	480	4
- 2	6	4	786	796	4	- 3	7	11	259	255	6	- 1	4	19	782	769	3	- 3	6 2	27	297	300	4	0	2 37	415	432	4
- 7	7	4	511	509	3	0	7	11	227	214	5	- 3	3 5	19	643	642	4	C	6 2	.7	236	248	6	-2	3 37	382	392	5
- 4	- 7	4	634	645	4	- 5	8	11	208	214	5	() 5	19	558	550	4	- 5	72	27	236	234	5	- 4	4 37	313	305	5
- 1	1	4	565	570	4	0	0	12	229	186	4	- 5) 6	19	484	481	4	- 2	/ 2	. /	234	234	5	- 1	4 37	337	330	5

NESPOLO, NAKAMURA AND OHASHI

 TABLE 2—Continued

h	k	l	10 <i>F</i> °	$10F_{\rm c}$	10 <i>s</i>	h l	x l	10 <i>F</i> °	10 <i>F</i> _c	10 <i>s</i>	h k l	$10F_{o}$	$10F_{\rm c}$	10 <i>s</i>	h k l	$10F_{o}$	10 <i>F</i> _e	10 <i>s</i>	h	k l	$10F_{o}$	10 <i>F</i> _c	10 <i>s</i>
- 3	8	4	501	509	3	-12	2 12	362	106	109	-2619	505	513	4	-1128	927	880	4	- 3	5 37	283	283	6
0	1	5	2476	2386	5	- 3 3	3 12	263	205	4	-4719	421	425	4	0 2 28	766	771	3	0	5 37	254	245	5
-2	2	5	1955	1965	6	0 3	3 12	281	205	3	-1719	381	380	4	$-2\ 3\ 28$	686	686	3	- 5	6 37	205	214	6
- 1	3	5	1718	1669	7	-24	12	249	218	35	0 1 20	444	454	2	-4428	527	514	4	- 2	6 37	228	229	6
3	4	5	1272	1285	6	-4 :	5 12	213	212	6	$-2\ 2\ 20$	402	417	3	-1 4 28	556	561	4	0	1 38	259	263	5
0	4	5	1135	1153	5	-1 :	5 12	217	212	5	$-1\ 3\ 20$	376	385	3	-3528	477	474	4	-2	2 38	247	237	5
- 5	5	5	882	878	4	-60	5 12	177	177	8	-3420	320	331	4	0 5 28	407	409	4	- 1	3 38	229	215	6
-2	5	5	1015	1045	5	- 3 (b 12	207	197	4	0 4 20	305	307	5	- 5 6 28	356	357	5	- 3	4 38	188	180	7
- 4	6	2	807	813	4	00) 12 1 1 2	171	177	8	- 5 5 20	273	251	5	-2628	380	381	5	- 0	4 38	182	165	8
- 1	6	5	/42	/33	4	- 5	12	1/9	1/1	/	-2520	285	286	27	-4 / 28	311	315	4	- 3	5 38	148	151	8
- 0	7	5	283	280	4	- 2	12	102	1/1	8	-4 0 20	231	233	6	0 1 29	215	220	5	- 2	2 28	1/3	100	8 0
- 3	7	5	515	524	4	-40	12	1566	1570	6	-1020	185	181	6	- 2 2 29	200	105	5	- 4	6 38	108	122	10
- 5	8	5	517	524	3	- 1 .) 13	1300	1306	6	-3720	217	101	6	-1329 -3429	103	169	6	- 1	0 30	243	240	3
0	0	6	1440	1535	24	- 2 3	13	11322	1123	5		53	39	52	-3+29 0 4 29	160	158	8	- 1	2 39	216	215	4
- 1	2	6	1181	1205	14	-44	13	815	801	4	-1221	66	60	10	- 5 5 29	138	133	9	_ 3	3 39	182	177	7
- 3	3	6	888	903	4	-14	13	880	885	4	-3321	87	90	11	-2529	157	149	8	0	3 39	168	177	8
0	3	6	891	903	4	- 3 5	5 13	733	730	3	0 3 21	136	90	7	-4629	131	126	10	- 2	4 39	165	162	9
- 2	4	6	780	811	8	0 5	5 13	614	619	4	-2421	73	94	15	-1629	133	120	9	- 4	5 39	106	127	13
- 4	5	6	605	619	4	- 5 (5 13	543	535	4	-4 5 21	123	91	10	-3729	114	110	10	- 1	5 39	118	127	11
- 1	5	6	627	619	3	-2 (5 13	562	574	4	-1 5 21	96	91	13	0 0 30	188	168	7	- 3	6 39	88	110	88
- 6	6	6	432	433	4	-7 2	/ 13	374	373	4	-6621	101	77	12	$-1\ 2\ 30$	157	135	4	- 1	1 40	199	177	6
- 3	6	6	516	530	6	-4 î	/ 13	460	470	4	- 3 6 21	97	85	24	-3330	110	95	10	0	2 40	178	160	7
0	6	6	435	433	4	-1 1	/ 13	420	417	4	0 6 21	78	77	17	0 3 30	53	95	52	-2	3 40	163	145	8
- 5	7	6	413	407	4	- 3 8	3 13	368	373	4	-5721	93	75	13	-2430	103	83	8	- 4	4 40	137	113	10
- 2	7	6	401	407	4	0	14	2467	2431	6	-2721	73	75	18	-4 5 30	78	60	18	- 1	4 40	132	123	10
- 4	8	6	341	345	3	-22	2 14	1911	1941	7	-1122	567	567	2	-1530	0	60	1	- 3	5 40	62	105	62
- 1	1	7	842	903	4	-1.	3 14	1647	1630	7	0 2 22	500	507	3	-6630	0	38	1	0	5 40	89	90	14
0	2	7	658	694	3	- 3 4	+ 14	1242	124/	6	-2322	453	458	3	- 3 6 30	0	20	1	- 2	6 40	84	84	14
- 2	3	7	209	600	2	5 4	+ 14 : 14	1104	017	2	-4422	270	352	4	5 7 20	00	38	64 46	0	1 41	211	240	6
- 4	4	7	450	403 502	2	- 5 .) 14 5 17	1005	04/ 1011	4	- 1 4 22	227	225	4	-3730	40	24	25	- 2	2 41	175	100	7
_ 3	4	7	437	431	4	- 2 .	, 14 5 14	783	782	4	-3322 0522	284	282	5	-2730 -1131	196	179	55	- 1	3 41 4 41	1/5	199	ģ
0	5	7	368	372	4	-10	5 14	705	725	4	-5622	257	202	6	-1131 0 2 31	142	162	7	- 5	4 41	119	156	11
- 5	5	41	115	125	10	- 2 3	2 44	210	211	6	0 1 47	157	149	8	-1350	31	12	30	0	3 54	100	98	12
- 2	5	41	125	144	10	-13	3 44	199	195	7	-2247	162	137	8	-3450	66	9	66	- 2	4 54	99	92	13
- 4	6	41	98	116	11	- 3 4	44	157	168	9	-1347	131	126	10	0 4 50	0	8	1	- 1	1 55	85	101	16
0	0	42	268	274	4	0 4	44	124	157	11	- 3 4 47	133	108	9	0 0 51	192	191	5	0	2 55	0	93	1
- 1	2	42	248	250	7	- 5 5	5 44	116	128	9	0 4 47	115	101	10	-1251	184	176	13	- 2	3 55	70	86	18
- 3	3	42	208	213	7	-2 :	5 44	125	146	10	-2547	111	94	10	-3351	157	151	8	0	1 56	107	91	12
0	3	42	201	213	7	0 0) 45	96	44	29	0 0 48	117	107	24	0 3 51	166	151	7	- 2	2 56	112	86	10
- 2	4	42	189	198	5	-12	2 45	41	41	40	$-1\ 2\ 48$	84	100	16	-2451	136	140	42	- 1	3 56	90	80	12
- 4	5	42	165	162	7	- 3 3	3 45	0	37	1	-3348	87	88	15	-1152	52	25	52	0	0 57	24	79	23
- 1	5	42	138	162	9	0 3	3 45	0	37	1	0 3 48	0	88	1	0 2 52	36	23	35	- 1	2 57	27	74	27
- 3	6	42	135	142	5	-24	45	28	35	28	-2448	65	83	14	-2352	53	21	31	- 1	1 58	140	145	8
- 1	1	43	0	80	1	-4	5 45	_0	30	1	-1149	257	229	6	-1 4 52	61	17	60	0	2 58	116	137	9
0	2	43	51	71	51	-1 :	o 45	54	30	53	0 2 49	239	212	6	0 1 53	186	206	7	0	1 59	74	50	16
- 2	3	43	61	64	60	-11	46	172	177	8	-2349	208	196	7	-2253	160	191	8	- 2	2 59	15	47	14
- 4	4	43	0	47	1	0 2	2 46	166	163	8	-4449	161	158	7	-1353	146	178	8	0	0 60	93	/4	17
- 1	4	43 42	0	52	1	- 2 :	9 46 1 46	159	101	8 0	-1449	183	1/0	1	-3453	130	154	8 14	- I	2 60	80 107	69 54	13
- 3	5 5	43	0 24	42	1	-44	ו 40 ו ⊿∠	1.39	123	ð	- 3 3 49	102	14/	22	1 2 54	123	119	14 0	- 1	1 01	107	30	10
0	3 1	43 11	20	220	23 6	- 1 4	+ 40 ; 74	141 15	131	9 11	2 2 50	25	10	22 35	- 1 2 34	110	111	ð /1					
0	1	44	∠10	230	U	- 5 3	, 40	43	113	44	- 2 2 30	53	14	55	- 3 3 34	41	90	41					

(exactly above Lu) and the hole (at 0.60 Å from Lu along z) suggested that Lu was probably not on the center of symmetry. Therefore, a second refinement was performed, adopting the *split-atom model* for Lu. As shown in Table 3,

the *R* factor, the U_{eq} displacement, and especially the Fourier difference improved significantly (anisotropic displacement parameters are in Table 4). The displacement of Lu from the center of symmetry is about ± 0.14 Å. The

REINVESTIGATION OF THE LuFeO₃(ZnO)_m HOMOLOGOUS SERIES

TABLE 3Results of the Structure Refinement of $LuFeZnO_4$ in the Central-Atom Model (CAM) and in the Split-Atom Model (SAM)

TABLE 3—Continued

			-								
	Isc	be <i>et al.</i> (D								
M	100	360.1	9								
Calculated der	nsitv	6.96	Mg/m^3								
Radiation		Mok	$MoK\alpha \ (\lambda = 0.71073 \text{ Å})$								
Number of ref	lections for cell		× ·	,							
parameters		25									
Т Т		295 k									
Crystal shape,	size, color	spher	re, 0.0525 mm (ra	adius), brown							
Diffractometer	•	Enra	Enraf-Nonius CAD 4								
Scan		$\omega/2\vartheta$	$\omega/2\vartheta$								
Standard reflect	ctions and frequer	icy									
of measuremen	nts	3, 24	0 min								
Intensity varia	tion	-0.	2%								
Absorption co	efficient	39.70	mm^{-1}								
θ_{max}		60°									
Range for cell	parameters	39° ≤	$\leq \vartheta \leq 48^{\circ}$								
Limiting indic	es	$0 \le k$	$n \le 4, 0 \le k \le 7,$	$-61 \le l \le 60$							
Space group		R3m	(D_{3d}^5) (No. 166)								
Ζ		3									
Collected refle	ctions	558 (actually 635)								
Unique reflect	ions	558									
Reflections wit	th $I > 1.5\sigma(I)$	484									
<i>R</i> 1		0.036	1								
wR1		0.036	1								
GooF (S)		2.3									
parameters		13									
$\Delta ho_{ m max}$		7.9 eA	A ⁻³								
$\Delta ho_{ m min}$		-11	-11.9 eÅ^{-3}								
Extinction coe	fficient	$7.0 \times$	10^{-6}								
W	yckoff position	x = y	Ζ	$U_{ m eq}$							
W Lu:	yckoff position	x = y	<i>z</i>	U_{eq} 0.0184(1)							
Lu: M1	Vyckoff position	x = y 0 0	<i>z</i> 0 0.21564(3)	U_{eq} 0.0184(1) 0.0084(1)							
W Lu: M1 Q(1)	Vyckoff position 3a 6c 6c	x = y 0 0 0 0	z 0 0.21564(3) 0.1287(3)	U_{eq} 0.0184(1) 0.0084(1) 0.022(1)							
W Lu: M1 O(1) O(2)	<i>y</i> ckoff position 3 <i>a</i> 6 <i>c</i> 6 <i>c</i> 6 <i>c</i>	x = y 0 0 0 0 0	z 0 0.21564(3) 0.1287(3) 0.2923(2)	$\begin{array}{c} U_{eq} \\ \hline 0.0184(1) \\ 0.0084(1) \\ 0.022(1) \\ 0.013(1) \end{array}$							
W Lu: M1 O(1) O(2) L = O(2)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 0 0 0	z 0 0.21564(3) 0.1287(3) 0.2923(2)	$U_{\rm eq} \\ \hline 0.0184(1) \\ 0.0084(1) \\ 0.022(1) \\ 0.013(1) \\ \hline$							
W Lu: M1 O(1) O(2) Lu-O(2)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 0 2.233(1.052)	$\begin{array}{c} z \\ 0 \\ 0.21564(3) \\ 0.1287(3) \\ 0.2923(2) \\ 2) (\times 6) \end{array}$	U _{eq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
W Lu: M1 O(1) O(2) Lu-O(2) M1-O(2) M1-O(2)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 0 0 2.233(1.952(1.002)		$U_{\rm eq} \\ \hline 0.0184(1) \\ 0.0084(1) \\ 0.022(1) \\ 0.013(1) \\ \hline$							
W Lu: M1 O(1) O(2) Lu-O(2) M1-O(2) M1-O(1) M1 - O(1)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 0 2.233(1.952(1.993(2.215)))		U _{eq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
W Lu: M1 O(1) O(2) Lu-O(2) M1-O(2) M1-O(1) M1-O(1) O(2) Lu O(2)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 0 2.233(1.952(1.993(2.215(0))))		U _{eq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
W Lu: M1 O(1) O(2) Lu-O(2) M1-O(2) M1-O(1) M1-O(1) O(2)-Lu-O(2) O(2) Lu-O(2)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1)		U _{eq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
W Lu: M1 O(1) O(2) Lu-O(2) M1-O(2) M1-O(1) M1-O(1) O(2)-Lu-O(2) O(2)-Lu-O(2) O(2)-Lu-O(2)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1)		U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
W Lu: M1 O(1) O(2) Lu-O(2) M1-O(2) M1-O(1) M1-O(1) O(2)-Lu-O(2) O(2)-Lu-O(2) O(2)-Fe-O(1) O(1) Fe-O(1)	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 1.182)		U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\begin{tabular}{ c c c c c c c } \hline W \\ \hline Lu: \\ M1 \\ O(1) \\ O(2) \\ Lu-O(2) \\ M1-O(1) \\ M1-O(1) \\ M1-O(1) \\ O(2)-Lu-O(2) \\ O(2)-Lu-O(2) \\ O(2)-Fe-O(1) \\ O(1)-Fe-O(1) \\ O(1)-Fe-O(1) \\ O(2)-Fe-O(1) \\ O(2)-Fe-O(2) \\ O(2$	/yckoff position 3a 6c 6c 6c	x = y 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2)	$\begin{array}{c} z \\ 0 \\ 0.21564(3) \\ 0.1287(3) \\ 0.2923(2) \end{array}$ 2) (× 6) 5) 1) (× 3) 8)) (× 6)) (× 6)) (× 3) 1) (× 3) 1) (× 3)	U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\label{eq:constraint} \begin{array}{c} W \\ Lu: \\ M1 \\ O(1) \\ O(2) \\ Lu-O(2) \\ M1-O(2) \\ M1-O(1) \\ M1-O(1) \\ O(2)-Lu-O(2) \\ O(2)-Lu-O(2) \\ O(2)-Fe-O(1) \\ O(1)-Fe-O(1) \\ O(2)-Fe-O(1) \\ O(2)-Fe-O(2) \\ O(2)-Fe-O(2) \\ O(2)-Fe-O(1) $	/yckoff position 3a 6c 6c 6c	x = y 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2	$\begin{array}{c} z \\ 0 \\ 0.21564(3) \\ 0.1287(3) \\ 0.2923(2) \end{array}$ 2) (× 6) 5) 1) (× 3) 8)) (× 6)) (× 6)) (× 3) 1) (× 3)) (× 3)	U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\begin{tabular}{ c c c c c } \hline W \\ \hline Lu: \\ M1 \\ O(1) \\ O(2) \\ Lu-O(2) \\ M1-O(2) \\ M1-O(1) \\ M1-O(1) \\ O(2)-Lu-O(2) \\ O(2)-Lu-O(2) \\ O(2)-Fe-O(1) \\ O(1)-Fe-O(1) \\ O(2)-Fe-O(1) \\ O(2)-Fe$	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 esent stud		U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
W Lu: M1 O(1) O(2) Lu-O(2) M1-O(2) M1-O(1) M1-O(1) O(2)-Lu-O(2) O(2)-Lu-O(2) O(2)-Fe-O(1) O(1)-Fe-O(1) O(2)-Fe-O(1) M-	/yckoff position 3a 6c 6c 6c 6c	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 esent stud 360.19		U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\begin{tabular}{ c c c c c } \hline W \\ \hline Lu: \\ M1 \\ O(1) \\ O(2) \\ Lu-O(2) \\ M1-O(2) \\ M1-O(1) \\ M1-O(1) \\ O(2)-Lu-O(2) \\ O(2)-Lu-O(2) \\ O(2)-Fe-O(1) \\ O(1)-Fe-O(1) \\ O(2)-Fe-O(1) \\ O(2)-Fe-O(1) \\ \hline M_r \\ Volume \end{tabular}$	/yckoff position 3a 6c 6c 6c 9r	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 esent stud 360.19 257.7(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\begin{tabular}{ c c c c c } \hline W \\ \hline Lu: & M1 \\ O(1) & O(2) \\ Lu-O(2) & M1-O(2) \\ M1-O(1) & M1-O(1) \\ O(2)-Lu-O(2) & O(2)-Lu-O(2) \\ O(2)-Lu-O(2) & O(2)-Fe-O(1) \\ O(1)-Fe-O(1) & O(2)-Fe-O(1) \\ \hline M_r & Volume \\ Calculated der \end{tabular}$	/yckoff position 3a 6c 6c 6c Pr	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 esent stud 360.19 257.7(6.963)	$\begin{array}{c} z \\ 0 \\ 0.21564(3) \\ 0.1287(3) \\ 0.2923(2) \end{array}$ 2) (× 6) 5) 1) (× 3) 8)) (× 6)) (× 6)) (× 3) 1) (× 3) 1) (× 3) y \\ 0(3) Å^3 \\ Mg/m^3 \end{array}	U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\begin{tabular}{ c c c c c } \hline W \\ \hline Lu: & M1 \\ O(1) & O(2) \\ Lu-O(2) & M1-O(2) \\ M1-O(1) & M1-O(1) \\ O(2)-Lu-O(2) & O(2)-Lu-O(2) \\ O(2)-Lu-O(2) & O(2)-Fe-O(1) \\ O(1)-Fe-O(1) & O(2)-Fe-O(1) \\ \hline M_r & Volume \\ Calculated der \\ Absorption co \\ \end{tabular}$	/yckoff position 3a 6c 6c 6c 6c Pr asity efficient	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442)	$\begin{array}{c} z \\ 0 \\ 0.21564(3) \\ 0.1287(3) \\ 0.2923(2) \end{array}$ 2) (× 6) 5) 1) (× 3) 8)) (× 6)) (× 6)) (× 3) 1) (× 3) 1) (× 3)) (× 3) y \\ 0(3) Å^3 \\ Mg/m^3 \\ 2 mm^{-1} \end{array}	U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	/yckoff position 3a 6c 6c 6c Pr hsity efficient a collection	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤	z 0 0 0.21564(3) 0.1287(3) 0.2923(2) 2) (× 6) 5) 1) (× 3) 8)) (× 6)) (× 6)) (× 3) 1) (× 3) 1) (× 3) y 0(3) Å ³ Mg/m ³ 2 mm ⁻¹ 5 $\vartheta \le 59.63^{\circ}$	U _{cq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1)							
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	/yckoff position 3a 6c 6c 6c Pr hsity efficient a collection es	x = y 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤ 0 < h	z 0 0 0.21564(3) 0.1287(3) 0.2923(2) 2) (× 6) 5) 1) (× 3) 8)) (× 6)) (× 6)) (× 3) 1) (× 3) 1) (× 3) y 0(3) Å ³ Mg/m ³ 2 mm ⁻¹ $\leq \vartheta \leq 59.63^{\circ} \leq 4, 0 \leq k < 7.$	$\frac{U_{eq}}{0.0184(1)}$ 0.0084(1) 0.022(1) 0.013(1) -61 $\leq l \leq 60$							
W Lu: M1 $O(1)$ $O(2)$ Lu- $O(2)$ M1- $O(1)$ $M1-O(1)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Fe- $O(1)$ $O(1)$ -Fe- $O(1)$ $O(2)$ -Fe- $O(1)$ M_r Volume Calculated der Absorption co Range for datz Limiting indice Space group	/yckoff position 3a 6c 6c 6c Pr asity efficient a collection es	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤ 0 ≤ h R3m (z 0 0 0.21564(3) 0.1287(3) 0.2923(2) 2) (× 6) 5) 1) (× 3) 8)) (× 6)) (× 6)) (× 3) 1) (× 3) 1) (× 3) y 0(3) Å ³ Mg/m ³ 2 mm ⁻¹ $\leq \vartheta \leq 59.63^{\circ} \leq 4, 0 \leq k \leq 7, -D_{3d}^{\circ}$ (No. 166)	U_{eq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1) -61 $\leq l \leq 60$							
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	/yckoff position 3a 6c 6c 6c Pr asity efficient a collection es	x = y 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤ 0 ≤ h R3m (3	$\begin{array}{c} z\\ 0\\ 0.21564(3)\\ 0.1287(3)\\ 0.2923(2)\\ 2) (×6)\\ 5)\\ 1) (×3)\\ 8)\\) (×6)\\) (×6)\\) (×3)\\ 1) (×3)\\ 1) (×3)\\ 1) (×3)\\ y\\ 0(3) Å^{3}\\ Mg/m^{3}\\ 2 mm^{-1}\\ \leq \vartheta \leq 59.63^{\circ}\\ \leq 4, 0 \leq k \leq 7, -D_{3d}^{\circ}) (No. 166) \end{array}$	U_{eq} 0.0184(1) 0.0084(1) 0.022(1) 0.013(1) -61 $\leq l \leq 60$							
W Lu: M1 $O(1)$ $O(2)$ Lu- $O(2)$ M1- $O(1)$ M1- $O(1)$ M1- $O(1)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Fe- $O(1)$ $O(1)$ -Fe- $O(1)$ $O(2)$ -Fe- $O(1)$ M_r Volume Calculated der Absorption co Range for datz Limiting indice Space group Z Completeness Completeness	Vyckoff position 3a 6c 6c 6c 6c Pr hsity efficient a collection es to $\theta = 59.63$	x = y 0 0 0 0 2.233(1.952(1.993) 2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤ 0 ≤ h R3m (0 3 100.0 ⁶	z 0 0 0.21564(3) 0.1287(3) 0.2923(2) 2) (×6) 5) 1) (×3) 8)) (×6)) (×6)) (×6)) (×3) 1) (×3) 1) (×3) y 0(3) Å ³ Mg/m ³ 2 mm ⁻¹ $\leq \vartheta \leq 59.63^{\circ} \leq 4, 0 \leq k \leq 7, -D_{3d}^{\circ}$ (No. 166)	$U_{\rm eq}$ 0.0184(1) 0.0084(1) 0.022(1) 0.013(1) -61 $\leq l \leq 60$							
W Lu: M1 $O(1)$ $O(2)$ Lu- $O(2)$ M1- $O(1)$ M1- $O(1)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Fe- $O(1)$ $O(1)$ -Fe- $O(1)$ $O(2)$ -Fe- $O(2)$ <	Vyckoff position 3a 6c 6c 6c 6c Pr hsity efficient a collection es to $\vartheta = 59.63$ ctions	x = y 0 0 0 0 2.233(1.952(1.993) 2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤ 0 ≤ h R3m (3 100.00 635	z 0 0 0.21564(3) 0.1287(3) 0.2923(2) 2) (×6) 5) 1) (×3) 8)) (×6)) (×6)) (×3) 1) (×3) 1) (×3) 0 (×3) 1) (×3) (×3) (×3) (×3) (×3) (×3) (×3) (×3)	$\frac{U_{\rm eq}}{0.0184(1)}$ 0.0084(1) 0.022(1) 0.013(1) $-61 \le l \le 60$							
W Lu: M1 $O(1)$ $O(2)$ Lu- $O(2)$ M1- $O(1)$ M1- $O(1)$ M1- $O(1)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Fe- $O(1)$ $O(1)$ -Fe- $O(1)$ $O(2)$ -Fe- $O(2)$	Vyckoff position 3a 6c 6c 6c 6c Pr hsity efficient a collection es to $\vartheta = 59.63$ ctions ions	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤ 0 ≤ h R3m (3 100.00 635 558	z 0 $0.21564(3)$ $0.1287(3)$ $0.2923(2)$ $z) (× 6)$ $b) (× 3)$ $b) (× 6)$ $b) (× 3)$ $c) (× 3)$ $c) (× 3)$ $c) (× 3)$ $c) (× 3)$ $d) (× 3)$	$\frac{U_{\rm eq}}{0.0184(1)}$ 0.0084(1) 0.0022(1) 0.013(1) $-61 \le l \le 60$							
W Lu: M1 $O(1)$ $O(2)$ Lu- $O(2)$ M1- $O(1)$ M1- $O(1)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Lu- $O(2)$ $O(2)$ -Fe- $O(1)$ $O(1)$ -Fe- $O(1)$ $O(2)$ -Fe- $O(1)$ <	Vyckoff position 3a 6c 6c 6c 6c Pr hsity efficient a collection es to $\vartheta = 59.63$ ctions ions th $I > 2\sigma(I)$	x = y 0 0 0 0 2.233(1.952(1.993(2.215(99.9(1 80.1(1 98.1(2 118.1(81.9(2 118.1(81.9(2 esent stud 360.19 257.7(6.963 39.442 2.40 ≤ 0 ≤ h R3m (3 100.00 635 558 484	z 0 $0.21564(3)$ $0.1287(3)$ $0.2923(2)$ (> 6) (> 6) (> 6) (> 6) (> 6) (> 3)	$\frac{U_{\rm eq}}{0.0184(1)}$ 0.0084(1) 0.022(1) 0.013(1) $-61 \le l \le 60$							

		Central-atom (Lu at 0,0,0)	node	l Split-ato (Lu at 0	bm model $(0, 0, z)$			
$R1[I > 2\sigma($	[I)]	0.0360		0.0262				
R1 (all data	a)	0.0452		0.0368				
wR2[I > 2]	$\sigma(I)$]	0.0843		0.0672				
wR2 (all da	ata)	0.0872		0.0700				
GooF (S)		1.219		1.211				
No. of para	ameters	13		14				
$\Delta ho_{\rm max}$		6.131 eÅ ⁻³		5.388 eÅ	- 3			
		(0, 0, 0)		(2/3, 1/3	, 0.1022)			
		0.0 Å		0.39 Å fi	om M1			
		from Lu						
Δho_{\min}		$-13.928 \text{ e}\text{\AA}^{-3}$	3	- 3.774	eÅ ^{−3}			
		(0, 0, 0.0236)		(0, 0, 0.0	272)			
		0.60 Å from Lu	1	0.55 Å fi	om Lu			
F(000)		477		477				
Extinction	coefficient	0.0110(9)		0.0008(6)			
	Wyckoff I	pos. $x = y$		Ζ	U_{eq}			
Lu:	3 <i>a</i>	0		0	0.019(1)			
M1	6 <i>c</i>	0		0.2156(1)	0.009(1)			
O(1)	6 <i>c</i>	0		0.1288(4)	0.021(1)			
O(2)	6 <i>c</i>	0		0.2926(2)	0.013(1)			
	Wvckoff							
	pos.	Occupancy	x = y	y z	U_{eq}			
Lu:	6 <i>c</i>	0.5	0	0.0056(1)	0.010(1)			
M1	6 <i>c</i>	1.0	0	0.2156(1)	0.008(1)			
O(1)	6 <i>c</i>	1.0	0	0.1292(3)	0.019(1)			
O(2)	6 <i>c</i>	1.0	0	0.2924(2)	0.012(1)			
Lu-O(2)		2.230(2) (×6)		2.1700(1	5) (×3)			
				2.3020(1	9) (×3)			
M1 - O(2)		1.959(5)		1.954(4)				
M1 - O(1)		1.9938(13) (×3))	1.9951(9) (×3)			
M1 - O(1)		2.210(9)		2.202(6)				
O(2)-Lu-O(2)	D(2)	$100.08(15) (\times 6)$)	103.94(1	0) (×3)			
O(2)-Lu-O(2)	D(2)			95.89(11) (×3)			
O(2)-Lu-O(2)	D(2)	79.92(15) (×6)		79.87(10)) (×3)			
O(2)-Lu-0	D(2)			173.58(4	·) (×3)			
O(2)-Fe- $O(2)$ -Fe- $O(2)$	D(1)	98.2(3) (×3)		98.40(19) (×3)			
O(1)-Fe- $O(1)$	D(1)	118.02(13) (×3))	117.90(9) (×3)			
O(2)-Fe-0	D(1)	81.8(3) (×3)		81.59(17	81.59(17) (×3)			

Note. Here, *R*1 is computed in terms of *F*, and w*R*2 is computed in terms of F^2 and is thus more than twice w*R*1. Cell dimensions in hexagonal axes a = b = 3.4185(1) Å, c = 25.463(3) Å, cell volume V = 257.71(3) Å (after (1)).

 U_{eq} displacement factor of Lu, although significantly lower than the value for the average structure reported in Isobe *et al.* (1), is still relatively high. The cause can be likely found in the statistical distribution of Lu between the two halfsites. The U_{eq} displacement factor of O(1) is not significantly influenced by the model adopted, as could be foreseen from the fact that O(1) is not bound to the octahedral site. A relatively large value of the displacement parameter U_{33} of O(1) has been repeatedly reported for the compounds isostructural with LuFeO₃(ZnO) (e.g., (1, 3, 7)).

102

		Centra	ıl-atom mc	del (Lu at	0, 0, 0)		Split-atom model (Lu at $0, 0, z$)							
	U11	U22	<i>U</i> 33	U23	<i>U</i> 13	U12	<i>U</i> 11	U22	<i>U</i> 33	U23	<i>U</i> 13	<i>U</i> 12		
Lu	4(1)	4(1)	49(1)	0	0	2(1)	4(1)	4(1)	23(1)	0	0	2(1)		
Fe/Zn	7(1)	7(1)	11(1)	0	0	4(1)	7(1)	7(1)	10(1)	0	0	4(1)		
O(1)	14(1)	14(1)	35(3)	0	0	7(1)	15(1)	14(1)	28(2)	0	0	7(1)		
O(2)	13(1)	13(1)	13(2)	0	0	6(1)	12(1)	12(1)	12(1)	0	0	6(1)		

TABLE 4Anisotropic Displacement Parameters (Ų×10³) for LuFeZnO4

Note. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U 11 + \cdots + 2hka^* b^* U 12]$.

DISCUSSION

In the accretional homologous series under consideration, the shape of the trigonal bipyramid of the first K M sites ($K \ge 0$; the total number of M sites is K + 1) is more regular, with the three basal M_i -O_i bonds shorter than the M_i - O_{i+1} and M_i - O_{i-1} apical bonds. The shape of the M_{K+1} trigonal bipyramid is, however, distorted, with the M_{K+1} -O_{K+2} apical bond shorter than the three basal bonds M_{K+1} -O_{K+1}, and approaches an irregular tetrahedron. This asymmetric coordination results in an anomalous CD for the cations. A few examples have been reported in which the trigonal bipyramid around the (K + 1)th site is more regular, with the three basal M_{K+1} -O_{K+1} bonds shorter than the apical M_{K+1} -O_{K+2} bond $(InFe_{0.5}^{3+}Fe_{1.25}^{2+}Si_{0.25}O_{4} (8); LuFeO_{3}(ZnO)_{6} (1); InGaZnO_{4}$ (21)). Those structures do not show any significant anomaly in the cationic CD (21).

The unsatisfactory q/Q(cation) for the m = 1 member suggests a displacement of the octahedral cation from the center of symmetry. This displacement has been reported for another sample with the same composition (4) and confirmed in the present study by a re-refinement adopting the split-atom model. When m > 1 the effect of the geometrical distortion of the trigonal bipyramid around the M_{K+1} site likely results in a site preference of Zn and in the distribution of the trivalent cation in the other M sites, without necessity of displacing Lu from the center of symmetry. In fact, the structure refinement of the m = 4,5,6 members did not reveal the same high displacement parameters for Lu that have been found for the m = 1 member. The cation distribution could not be determined by structure refinement (1). The indications of the CD analysis for the higher members thus require confirmation from further experimental study.

From the YbFe₂O₄ structure (3) two different accretional homologous series can be derived, YbFeO₃(FeO)_m, isostructural with the LuFeO₃(ZnO)_m series, and (YbFeO₃)_nFeO, of which members corresponding to n = 1(3), n = 2 (22, 23), n = 3, and 4 (24) have been reported. Also in this second series, the Yb is in octahedral coordination, and the Fe is in trigonal bipyramidal coordination. Only for the first two members, however, has single-crystal structure refinement been reported. The structure of two different samples of the n = 2 member are available (22, 23). Within the limits of the quality of the structure refinements (the error was on the second decimal of the bond distances), those two samples have two different kinds of trigonal bipyramids for the Fe2 site: one has the same kind of distortion reported for the LuFeO₃(ZnO)_m series and q/Qvalues similar to those reported here (Yb, 1.09; Fe1, 0.93; Fe2, 0.95), whereas in the other case (23) neither such distortion nor such unsatisfactory q/Q values (Yb, 1.02; Fe1, 0.96; Fe2, 1.00) are present (21).

For higher members of the accretional homologous series $InFeO_3(ZnO)_m$ (isostructural with $LuFeO_3(ZnO)_m$) extra reflections in the selected area electron diffraction (SAED) pattern were reported (25-28), and were interpreted in terms of superspace group analysis (27). Transmission electron microscope (TEM) observations have revealed the existence of a modulation wave involving the octahedral cation (26-29). Correspondingly, the symmetry lowered to monoclinic and orthorhombic, respectively, instead of rhombohedral and hexagonal, respectively. The distortion of the trigonal bipyramids and its effect on the location of the octahedral cation, as shown in the present research, may play a significant role in the observed anomalies. It is, however, not clear why such anomalies are observed in higher members only. Structural studies of a larger number of members of these series, especially of higher members, are necessary to explain the features revealed by SAED/TEM studies.

ACKNOWLEDGMENTS

This research has been developed during a post-doctoral program (M.N.) supported by the Japan Science and Technology Corporation. We express our gratitude to Dr. Klaus Harms (Faculty of Chemistry, University of Marburg) for providing the XCAD4 data reduction program, and to Dr. Louis J. Farrugia (Department of Chemistry, University of Glasgow),

for assistance in implementation and usage of the PLATON software package. M.N. is indebted to Professor Giovanni Ferraris and Professor Gabriella Ivaldi (University of Torino, Italy) and to Prof. Emil Makovicky (University of Copenhaghen, Denmark) for discussions. The comments from two anonymous reviewers helped us in improve the clarity of the manuscript.

REFERENCES

- 1. M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, *Acta Crystallogr.* C 50, 332 (1994).
- E. Makovicky, *in* "Modular Aspects of Minerals/EMU Notes in Mineralogy" (S. Merlino, Ed.), Vol. I, Chap. 5, p. 315. Eötvös University Press, Budapest, 1997.
- K. Kato, I. Kawada, N. Kimizuka, and T. Katsura, Z. Kristallogr. 141, 314 (1975).
- R. J. Cava, A. P. Ramirez, Q. Huang, and J. J. Krajewski, J. Solid State Chem. 140, 337 (1998).
- R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, and K. Bernet, J. Less-Common. Met. 156, 105 (1989).
- 6. M. Nespolo, G. Ferraris, and H. Ohashi, *Acta Crystallogr. B* 55, 902 (1999).
- M. Isobe, N. Kimizuka, J. Iida, and S. Takekawa, Acta Crystallogr. C 46, 1917 (1990).
- R. Gérardin, A. Alebouyeh, F. Jeannot, A. Courtois, B. Malaman, and O. Evrard, *Mater. Res. Bull.* 15, 647 (1980).
- 9. B. Malaman, O. Evrard. N. Tannièeres, J. Aubry, A. Courtois, and J. Protas, *Acta Crystallogr. B* **31**, 1310 (1975).
- 10. L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).

- 11. Yu. A. Pyatenko, Sov. Phys. Crystallogr. 17, 677 (1973).
- 12. I. D. Brown and R. D. Shannon, Acta Crystallogr. A 29, 266 (1973).
- 13. I. D. Brown and K. K. Wu, Acta Crystallogr. B 32, 1957 (1976).
- 14. I. D. Brown and D. Altermatt, Acta Crystallogr. B 41, 244 (1985).
- I. D. Brown, *in* "Structure and Bonding in Crystals" (M. O'Keeffe and A. Navrotsky, Eds.), Vol. II, Chap. 14, p. 1. Academic Press, New York.
- 16. H. Neumann, Mineral. Mag. 28, 575 (1949).
- 17. N. Kimizuka and E. Takayama, J. Solid State. Chem. 40, 109 (1981).
- K. Harms, "XCAD4, Program for the Lp-Correction of CAD4 Diffractometer Data." University of Marburg, Germany, 1996.
- 19. A. L. Speck, Acta Crystallogr. A 46, C34 (1990).
- G. M. Sheldrick, "SHELX97, Program for the Solution and Refinement of Crystal Structures." University of Göttingen, Germany, 1997.
- 21. M. Nespolo, A. Sato, T. Osawa, and H. Ohashi, *Cryst. Res. Technol.*, in press.
- K. Kato, I. Kawada, N. Kimizuka, I. Shindo, and T. Katsura, Z. Kristallogr. 143, 278 (1976).
- B. Malaman, O. Evrard. N. Tannièeres, A. Courtois, and J. Protas, Acta Crystallogr. B 32, 749 (1976).
- 24. N. Kimizuka, K. Kato, I. Shindo, I. Kawada, and T. Katsura, Acta Crystallogr. B 32, 1620 (1976).
- N. Uchida, Y. Bando, M. Nakamura, and N. Kimizuka, J. Elec. Micr. 43, 146 (1994).
- C. Li, Y. Bando, M. Nakamura, and N. Kimizuka, J. Elec. Micr. 46, 119 (1997).
- C. Li, Y. Bando, M. Nakamura, M. Onoda, and N. Kimizuka, J. Solid State Chem. 139, 347 (1998).
- C. Li, Y. Bando, M. Nakamura, and N. Kimizuka, J. Solid State Chem. 142, 174 (1999).
- 29. T. Hörlin, G. Svensson, and E. Alsson, J. Mater. Chem. 8, 2465 (1998).