Reinvestigation of the $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ Homologous Series: Insights from Charge Distribution Analysis on the Effect of the Coordination Polyhedra Shape on the Cation Distribution

Massimo Nespolo, Masaki Nakamura, and Haruo Ohashi
National Institute for Research in Inorganic Materials, Research Center for Creating New Materials, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan

Received August 3, 1999; in revised form October 20, 1999; accepted October 22, 1999

Abstract

A previous report on the homologous series $\mathrm{LuFeO}_{3}(\mathbf{Z n O})_{m}$ ($m=1,4,5,6$) is reanalyzed in terms of the charge distribution (CD) approach, an alternative to the bond valence method, which exploits the geometry of the coordination polyhedra. It is shown that in the $m=1$ member the octahedral site is not well balanced; besides, members $m=4,5,6$ are well balanced only assuming that Fe^{3+} avoids the cation site next to Lu . The main reason for these effects is likely in the shape of the trigonal bipyramids hosting Fe and Zn . The polyhedron next to the Lu site is highly distorted, with the three basal $M-O$ distances midway between those of the two apical ones. This geometry, approaching the tetrahedral shape, is more suitable for hosting Zn than Fe ; besides, the short apical $M-O$ distance results in enhancement of the intercationic (Lu-M1) repulsion. For members $m>1$ such repulsion is likely avoided by distributing the trivalent cation into the \boldsymbol{m} - 1 trigonal bipyramids not directly bound to the octahedron. The $m=1$ member contains only one trigonal bipyramid and cannot thus adopt the same scheme of cation distribution. As a result, Lu is probably shifted outside the center of symmetry. A new refinement of the $m=1$ member, based on the original intensities, shows that Lu is displaced by $\pm 0.14 \AA$ from the center of symmetry. With respect to the refinement in the central atom model, a lower \boldsymbol{R} factor, a lower Fourier difference and thermal parameters have been obtained. The results of the present research suggest the $\mathrm{Lu}-\mathrm{Fe}^{3+}$ repulsion, related to the asymmetry of the trigonal bypiramidal coordination of $\mathbf{Z n} / \mathrm{Fe}$, as a possible cause of the deviation from the average structure. (C) 2000 Academic Press

Key Words: charge distribution; homologous series; splitatom model.

INTRODUCTION

Isobe et al. (1) investigated the structure of the $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ homologous series $(m=1,4,5,6)$ by singlecrystal X-ray diffraction (XRD), as part of a project aimed at determining the phase diagrams of oxides with relevant electronic properties. This series of compounds belongs to the so-called accretional homologous series, i.e., series in
which the type(s) and the general shapes of building blocks, as well as the principles defining their mutual relationships, are preserved, but the size of these blocks increases with the number of coordination polyhedra in them (2). The members of this accretional homologous series are based on the $\mathrm{YbFe}_{2} \mathrm{O}_{4}$ structure (3) and consist essentially of the close packing of O atoms, with Lu in the octahedral voids and $\mathrm{Fe} / \mathrm{Zn}$ in trigonal bipyramidal coordination. From the structure refinement, the displacement parameters U_{33} of Lu and $\mathrm{O}(1)$ of the $m=1$ member were abnormally high. A refinement adopting the split-atom model for Lu was attempted and gave uncertain deviations, although with a lower R factor, and the average structure was accepted (1). For $m>1$ members, the distribution of Fe^{3+} in the trigonal bipyramidal sites could not be determined on the basis of the R factor (1).

More recently, a neutron powder diffraction study of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})(4)$ has indicated that the split-atom model, rather than the central-atom model, better describes the structure. In this research we present the charge distribution (CD) analysis $(5,6)$ (a method used to calculate the bond strengths on the basis of the geometry of the coordination polyhedra) of the accretional homologous series (1) and a new refinement of the $m=1$ member, using the original intensities collected by Isobe et al. (1), which confirms the displacement of Lu from the center of symmetry.

DESCRIPTION OF THE STRUCTURE OF THE $\mathrm{LuFeO}_{3}(\mathbf{Z n O})_{m}$ ACCRETIONAL HOMOLOGOUS SERIES

The structure of the $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ accretional homologous series can be rationalized by writing m as a function of two integral numbers, K and L, as

$$
\begin{equation*}
m=2 K+L \tag{1}
\end{equation*}
$$

where $K \geq 0$ and $L=0$ or 1 . Members with $L=1$ belong to space group $R \overline{3} m$; those with $L=0$ to space group
$P 6_{3} / m m c$. Differently from the previous classification in terms of the parity of m (odd $m, R \overline{3} m$; even $m, P 6_{3} / m m c ;$ (1)) Eq. [1] gives a general scheme for the coordination polyhedra. In all the members of the accretional homologous series, the Lu atom is in octahedral coordination, and the $\mathrm{Fe} / \mathrm{Zn}$ atoms are in trigonal bipyramidal coordination (M sites). The number of M sites is $K+1$, and the number of crystallographically independent oxygen atoms is $K+2$. Lu is octahedrally coordinated by the $(K+2)$ th oxygen, whereas the i th M site is coordinated by the oxygen atoms of types $i-1$, i, and $i+1$ [only $\mathrm{O}(1)$ and $\mathrm{O}(2)$ for M1], $M_{i}-\mathrm{O}_{i}$ being the basal bonds (in number of three). The M site adjacent to the Lu sheet is the ($K+1$)th one (hereinafter labeled M_{K+1}); the octahedral site and the M_{K+1} site share the $(K+2)$ th oxygen atom (hereinafter labeled O_{K+2}), which forms the shortest of the two apical bonds of the trigonal bipyramid.

In all but the $m=6$ member, the trigonal bipyramid around M_{K+1} is highly distorted, having the apical $M_{K+1}-\mathrm{O}_{K+2}$ bond shorter and the other apical $M_{K+1}-\mathrm{O}_{\mathrm{K}}$ bond longer than the three basal $M_{K+1}-\mathrm{O}_{K+1}$ bonds (this is equivalent to saying that the cation is significantly displaced from the basal plane). The same distortion was reported in several compounds isostructural with the $m=1$ member of the series, $\mathrm{YbFe}_{2} \mathrm{O}_{4}$ (3), $\mathrm{LuFe}_{2} \mathrm{O}_{4}$ and $\mathrm{LuFeCoO}_{4}$ (7), InCuAlO ${ }_{4}$ (8), $\mathrm{Yb}_{0.5} \mathrm{Eu}_{0.5} \mathrm{Fe}_{2} \mathrm{O}_{4}$ (9), and also in a recent powder neutron diffraction study of the same compound, $\mathrm{LuFeZnO}_{4}$ (4).

CHARGE DISTRIBUTION ANALYSIS

The charge distribution (CD) method (5) is the most recent development of the classical theory of bond strength (10). The latter was introduced as an empirical method to discuss the chemical bonds around each cation in an experimentally determined structure, by assigning to each bond a "bond strength" corresponding to the ratio of the formal oxidation number to the coordination number.

The bond strength approach was further developed to treat nonionic bonds (and thus the words "cations" and "anions" have to be considered in their purely formal meanings, indicating simply the sign of the formal oxidation number, and not necessarily the presence of an ionic bond) and relatively distorted coordination polyhedra by employing the so-called Rs curves, i.e, empirical curves giving the bond strength (s) as a function of the bond lengths (R). Several kinds of Rs curves have been introduced (e.g., 11-14), all containing two or more empirical parameters obtained by fitting on a large set of well-refined structures. The bond strength computed employing the Rs curves is called bond valence, and the theory that aims to interpret the chemical bonds on the basis of the Rs curves is itself called bond valence (BV) theory (15). The empirical parameters used in the BV theory depend upon the cation-anion pair
and the experimental conditions (pressure, temperature) in which they have been derived. The "charge" (Q) of each cation and anion is computed as the sum of the bond valences.

On the other hand, the CD employs a single empirical parameter, which is characteristic of the anion (to date, this parameter has been refined only for the oxygen) and does not depend upon either the cation or the experimental conditions. The CD exploits the experimental bond distances to compute a noninteger coordination number (ECoN: effective coordination number) and distributes the formal oxidation number (q) of each atom among all its bonds as a function of ECoN. It is thus more related to the geometry of each coordination polyhedron, rather than to the true crystal chemistry, as instead is the BV. Since the Q computed according to CD is the result of the distribution of q, it is suitable to investigate isomorphic substitutions of cations with different q : a distribution giving $Q \neq q$ indicates the possible presence of a mistake in the assigned site occupancy (6).

All these empirical methods should be always used critically, since they try to explain in a simple way the main features of something as complex as the chemical bond. However, in contrast to the BV method, the CD method possesses an internal criterion indicating the reasonableness of the analysis performed. In the BV theory, the Q obtained as a summation of the bond valences of each chemical bond is defined and computed in exactly the same way for both the cations and the anions. A deviation from q in principle measures the deviation from the "ideal" structure, and it is commonly used to discuss the presence and the possible causes of valence unbalances. However, this analysis is acceptable only if the structure is correctly solved, and only if it does not extend beyond the limits of applicability of the BV method itself (e.g., it does not contain polyhedra that are too distorted). The evaluation of applicability should be performed through an independent route, and before any discussion based on the bond valences is proposed. On the other hand, in the CD method the Q for the anions is computed by distributing q as a function of ECoN, whereas Q for the cations is computed by distributing the q / Q of the anions, again as a function of ECoN. It follows that even when q / Q (anions) is significantly different from $1, q / Q$ (cations) is expected to be close to 1 for the method to be applicable. A q / Q (cations) ratio significantly different from 1 suggests that the structure may not be completely refined (6).

In Table 1 the results of the CD analysis are given for the four known members of the $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ series. The deviation of Q with respect to q is rather high for the $m=1$ member ($\sigma=18.6 \%$), as well as for the $m=4$ member, when a trivalent cation is located in the M_{K+1} site ($\sigma=14 \%$). For the two other members the agreement is better ($m=5$, $\sigma=9.3 \% ; m=6, \sigma=8.6 \%)$. For $m=1, q / Q$ differs from

TABLE 1
Charge Distribution (5, 6) for the Accretional Homologous Series $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$, Computed on the Basis of the Refined Structures in (1)

m	Compound	Cation	q	Q	q / Q
1^{a}	$\begin{aligned} & \mathrm{LuFeZnO}_{4} \\ & \sigma=0.186 \end{aligned}$	Lu	3.00	2.83	1.06
		$\mathrm{Zn} / \mathrm{Fe}$	2.50	2.58	0.97
4^{a}	$\begin{aligned} & \mathrm{LuFeZn}_{4} \mathrm{O}_{7} \\ & (1 / 5,2 / 5,2 / 5) \\ & \sigma=0.140 \end{aligned}$	Lu	3.00	2.88	1.04
		$\mathrm{Zn} / \mathrm{Fe}$	2.20	2.40	0.92
		$\mathrm{Zn} / \mathrm{Fe}$	2.20	2.22	0.99
		$\mathrm{Zn} / \mathrm{Fe}$	2.20	2.14	1.03
	$\begin{aligned} & \mathrm{LuFeZn}_{4} \mathrm{O}_{7} \\ & (1 / 3,2 / 3,0) \\ & \sigma=0.066 \end{aligned}$	Lu	3.00	2.96	1.01
		$\mathrm{Zn} / \mathrm{Fe}$	2.33	2.40	0.97
		$\mathrm{Zn} / \mathrm{Fe}$	2.33	2.27	1.03
		Zn	2.00	2.05	0.98
5^{a}	$\begin{aligned} & \mathrm{LuFeZn}_{5} \mathrm{O}_{8} \\ & (1 / 3,1 / 3,1 / 3) \\ & \sigma=0.093 \end{aligned}$	Lu	3.00	2.88	1.04
		$\mathrm{Zn} / \mathrm{Fe}$	2.17	2.27	0.96
		$\mathrm{Zn} / \mathrm{Fe}$	2.17	2.17	1.00
		$\mathrm{Zn} / \mathrm{Fe}$	2.17	2.13	1.02
	$\begin{aligned} & \mathrm{LuFeZn}_{5} \mathrm{O}_{8} \\ & (1 / 2,1 / 2,0) \\ & \sigma=0.054 \end{aligned}$	Lu	3.00	2.94	1.02
		$\mathrm{Zn} / \mathrm{Fe}$	2.25	2.27	0.99
		$\mathrm{Zn} / \mathrm{Fe}$	2.25	2.21	1.02
		Zn	2.00	2.06	0.97
6	$\begin{aligned} & \mathrm{LuFeZn}_{6} \mathrm{O}_{9} \\ & (1 / 7,2 / 7,2 / 7,2 / 7) \\ & \sigma=0.086 \end{aligned}$	Lu	3.00	3.05	0.98
		$\mathrm{Zn} / \mathrm{Fe}$	2.14	2.28	0.94
		$\mathrm{Zn} / \mathrm{Fe}$	2.14	2.17	0.99
		$\mathrm{Zn} / \mathrm{Fe}$	2.14	2.10	1.02
		$\mathrm{Zn} / \mathrm{Fe}$	2.14	2.07	1.04
	$\begin{aligned} & \mathrm{LuFeZn}_{6} \mathrm{O}_{9} \\ & (1 / 5,2 / 5,2 / 5,0) \\ & \sigma=0.073 \end{aligned}$	Lu	3.00	3.10	0.97
		$\mathrm{Zn} / \mathrm{Fe}$	2.20	2.28	0.97
		$\mathrm{Zn} / \mathrm{Fe}$	2.20	2.17	1.01
		$\mathrm{Zn} / \mathrm{Fe}$	2.20	2.13	1.03
		Zn	2.00	2.01	1.00

[^0]1 by 6% for the Lu site, but by only half that for the M1 $(\mathrm{Fe} / \mathrm{Zn})$ site: this suggests that some problems still remain in the structural determination of the Lu site. For the $m=4$ member, when disordered $\mathrm{Fe} / \mathrm{Zn}$ distribution is assumed, the highest deviation (8%) is for the $M 1$ site, followed by Lu (4%). Assuming only Zn in the M3 site, a significant improvement (reduction to 3 and 1%, respectively) is obtained. For $m=5$, assuming no Fe in the M3 site, a general improvement is again obtained, whereas for $m=6$ the indications are less clear. In the $m=1,4$ and 5 members, the trigonal bipyramid around M_{K+1} is distorted $\left(M_{K+1}-\mathrm{O}_{K+2}<M_{K+1}-\mathrm{O}_{K+1}\right)$ and approaches the tetrahedral shape, whereas it is more regular for the $m=6$ member. The improved charge distribution obtained when the trivalent cation avoids the polyhedron next to the Lu
octahedron seems thus related to the existence of distorted polyhedra midway between tetrahedra and trigonal bipyramids. The Zn is known to prefer a tetrahedral coordination (16): the distorted M_{K+1} is thus likely to be preferentially occupied by Zn , leaving Fe distributed among the other M_{K} sites. Besides, entrance of Fe^{3+} in the distorted M_{K+1}, which shares O_{K+2} with the Lu octahedron and has $M_{K+1}-\mathrm{O}_{K+2}$ as the shortest of the five $M-\mathrm{O}$ distances, would likely produce a $\mathrm{Lu}-\mathrm{Fe}$ repulsion, which would not occur in an undistorted bipyramid. The Lu in the octahedral site can thus tend to prevent the entrance of a trivalent cation in the neighboring M_{K+1} site.

For the $m=1$ member, since there is only one M site, no site preference for Zn is possible, and the $\mathrm{Lu}-\mathrm{Fe}^{3+}$ repulsion cannot hinder Fe^{3+} from entering there. In order to reduce the repulsion, the Lu may thus be displaced from the center of symmetry. This appears as a large U_{33} factor for Lu and high positive and negative values of the Fourier difference around the center of symmetry. This hypothesis is supported by a recent neutron study of the same compound (4), in which the structure could be correctly refined only by adopting the split-atom model for Lu .

REVISED REFINEMENT OF THE $\mathrm{LuFeZnO}_{4}$ STRUCTURE

To test the hypotheses described in the previous section, we have re-refined the $\mathrm{LuFeZnO}_{4}$ structure starting from the original intensities collected by Isobe et al. (1). For the description of synthesis and starting materials see $(1,17)$. The $m=1$ member was chosen as the most significant test structure because of the sharing of the M_{K+1} site by Fe and Zn . Intensities had been collected in the $R \overline{3} m$ asymmetric unit; however, re-examination of the original file revealed that, different from what was reported by Isobe et al. (1), data collection was not performed in the $(0 \leq h \leq 7$; $0 \leq k \leq 7 ; \quad 0 \leq l \leq 61)$ region but in the $\quad(0 \leq h \leq 4 ;$ $0 \leq k \leq 7 ;-61 \leq l \leq 60$) one. Isobe et al. (1) transformed the indices from the second to the first region, and merged reflections that were on the border of the asymmetric unit. The refinement was then performed against F. We have kept the original indexing and used the whole set of data, to check the consistency of the equivalents. Six strong reflections ($003,006,009,-129,-1212,-2412$) are actually not consistent and give an $R_{\text {int }}=0.0272$. The LP corrections were performed through the XCAD4 program (18), and the spherical absorption correction with the PLATON package (19). The structure refinement was performed against F^{2} with SHELX-97 (20) (observed and calculated F are in Table 2. A first refinement with Lu on the center of symmetry (central-atom model) was performed, which gave an $R 1$ similar to that obtained by Isobe et al. (1) (Table 3). In the Fourier difference, the highest peak was lower than that reported by Isobe et al. (1), but the deepest hole was higher. However, the locations of both the peak

TABLE 2
Observed and Calculted (Split-Atom Model) Structure Factors for $\mathbf{L u F e Z n O}_{4}$

TABLE 2-Continued

		10 F		10 s	$h \quad k$	l	$F_{\text {o }}$	$F_{\text {c }}$	$10 s$	$h \quad k \quad l$	$10 F_{\text {。 }}$	10 F	$10 s$	$h \quad k \quad l$	10	F ${ }_{\text {c }}$	$10 s$	$h \quad k \quad l$	$10 F_{\text {o }}$	$10 F_{\mathrm{c}}$	10 s
-3	84	4501	509	3	-12	12	362	106	109	-2619	505	513	4	-1128	927	880	4	-35 37	283	283	6
0	5	52476	2386	5	-33	12	263	205	4	-4719	421	425	4	0228	766	771	3	0537	254	245	5
-2	25	51955	1965	6	03	12	281	205	3	-1719	381	380	4	-2328	686	686	3	-5637	205	214	6
1	5	51718	1669	7	-24	12	249	218	35	0120	444	454	2	-4 428	527	514	4	-26 37	228	229	6
3	5	51272	1285	6	-45	12	213	212	6	-2220	402	417	3	-1428	556	561	4	0138	259	263	5
0	5	51135	1153	5	-15	12	217	212	5	-1320	376	385	3	-3528	477	474	4	-2238	247	237	5
-5	55	5882	878	4	-66	12	177	177	8	-3420	320	331	4	0528	407	409	4	-1338	229	215	6
-2	55	51015	1045	5	-36	12	207	197	4	0420	305	307	5	-5628	356	357	5	-3438	188	180	7
4	65	5807	813	4	06	12	171	177	8	-5 520	273	251	5	-2628	380	381	5	-0438	182	165	8
-1	65	5742	755	4	-57	12	179	171	7	-2520	285	286	5	-4728	311	315	4	-5 538	148	131	8
-6	75	5583	586	4	-27	12	162	171	8	-4620	231	235	7	0129	215	226	5	-2538	175	153	8
- 3	75	5642	661	4	-48	12	154	158	6	-1620	220	222	6	-2229	200	210	5	-4638	134	122	9
0	75	5515	524	3	-11	13	1566	1579	6	-6720	185	181	6	-1329	201	195	5	-1638	108	114	10
-5	85	5517	524	3	02	13	1322	1306	6	-3720	217	199	6	-3429	193	169	6	0039	243	240	3
0	06	61440	1535	24	-23	13	1134	1123	5	0021	53	39	52	0429	160	158	8	-1239	216	215	4
-1	26	61181	1205	14	-4 4	13	815	801	4	-1221	66	60	10	-5 529	138	133	9	- 3339	182	177	7
-3	36	6888	903	4	-14	13	880	885	4	-3321	87	90	11	-2529	157	149	8	0339	168	177	8
0	36	6891	903	4	-35	13	733	730	3	0321	136	90	7	-4629	131	126	10	-24 39	165	162	9
-2	46	6780	811	8	05	13	614	619	4	-2421	73	94	15	-1629	133	120	9	-4539	106	127	13
-4	56	6605	619	4	-56	13	543	535	4	-45 21	123	91	10	-3729	114	110	10	-1539	118	127	11
-1	56	6627	619	3	-26	13	562	574	4	-1521	96	91	13	0030	188	168	7	-3639	88	110	88
-6	66	6432	433	4	-77	13	374	373	4	-6621	101	77	12	-1230	157	135	4	-1140	199	177	6
-3	66	6516	530	6	-47	13	460	470	4	-3621	97	85	24	- 3330	110	95	10	0240	178	160	7
0	66	6435	433	4	-17	13	420	417	4	0621	78	77	17	0330	53	95	52	-2340	163	145	8
5	76	6413	407	4	-38	13	368	373	4	-5721	93	75	13	-2430	103	83	8	-4440	137	113	10
-2	76	6401	407	4	01	14	2467	2431	6	-2721	73	75	18	-4530	78	60	18	-1440	132	123	10
4	86	6341	345	3	-22	14	1911	1941	7	-1122	567	567	2	-1530	0	60	1	-3540	62	105	62
-1	17	7842	903	4	-13	14	1647	1630	7	0222	500	507	3	-6630	0	38	1	0540	89	90	14
0	27	7658	694	3	-34	14	1242	1247	6	-2322	453	458	3	-3630	0	50	1	-2640	84	84	14
-2	37	7569	60	2	04	14	1104	1117	5	-4422	381	352	4	0630	65	38	64	0141	211	240	6
4	47	7456	465	3	-5 5	14	855	847	4	-1422	378	382	4	-5730	46	34	46	-2241	217	218	6
- 1	47	7457	502	3	-25	14	1005	1011	5	-3522	332	325	5	-2730	45	34	35	-1341	175	199	7
- 3	57	7413	431	4	-46	14	783	782	4	0522	284	282	5	-1131	196	179	5	-3441	147	168	9
0	57	7368	372	4	-16	14	716	725	4	-5622	257	249	6	0231	142	162		0441	119	156	11
-5	541	1115	125	10	-22	44	10	211	6	0147	157	149	8	-1350	31	12	30	0354	100	98	12
-2	541	1125	144	10	-13	44	199	195	7	-2247	162	137	8	-3450	66	9	66	-2454	99	92	13
-4	641	198	116	11	-34	44	157	168	9	-1347	131	126	10	0450	0	8	1	-1155	85	101	16
0	042	2268	274	4	04	44	124	157	11	-3447	133	108	9	0051	192	191	5	0255	0	93	1
-1	242	248	250	7	-5 5	44	116	128		0447	115	101	10	-1251	184	176	13	-2355	70	86	18
- 3	342	208	213	7	-25	44	125	146	10	-2547	111	94	10	-3 351	157	151	8	0156	107	91	12
0	342	2201	213	7	00	45	96	44	29	0048	117	107	24	0351	166	151		-2256	112	86	10
-2	442	2189	198	5	-12	45	41	41	40	-1248	84	100	16	-2451	136	140	42	-1356	90	80	12
-4	542	2165	162	7	-33	45	0	37	1	- 3348	87	88	15	-1152	52	25	52	0057	24	79	23
- 1	542	2138	162	9	03	45	0	37	1	0348	0	88	1	0252	36	23	35	-1257	27	74	27
- 3	642	2135	142	5	-24	45	28	35	28	-2448	65	83	14	-2352	53	21	31	-1158	140	145	8
-1	143	3	80	1	-45	45	0	30	1	-1149	257	229	6	-1452	61	17	60	0258	116	137	9
0	243	31	71	51	-15	45	54	30	53	0249	239	212	6	0153	186	206	7	0159	74	50	16
-2	343	31	64	60	-11	46	172	177	8	-2349	208	196	7	-2253	160	191	8	-2259	15	47	14
-4	443	3	47	1	02	46	166	163	8	-4449	161	158	7	-1353	146	178	8	0060	93	74	17
- 1	443	30	52	1	-23	46	159	151	8	-1449	183	170	7	-3453	130	154	8	-1260	86	69	13
-3	543	3	42	1	-4 4	46	139	123	8	-3549	162	147	6	0054	125	119	14	-1161	107	56	10
0	543	326	35	25	-14	46	141	131	9	0150	67	16	22	-1254	110	111	8				
0	144	4218	230	6	-35	46	45	115	44	-2250	35	14	35	-3 354	41	98	41				

(exactly above Lu) and the hole (at $0.60 \AA$ from Lu along z) suggested that Lu was probably not on the center of symmetry. Therefore, a second refinement was performed, adopting the split-atom model for Lu. As shown in Table 3,
the R factor, the $U_{\text {eq }}$ displacement, and especially the Fourier difference improved significantly (anisotropic displacement parameters are in Table 4). The displacement of Lu from the center of symmetry is about $\pm 0.14 \AA$. The

TABLE 3
Results of the Structure Refinement of $\mathrm{LuFeZnO}_{4}$ in the Cen-tral-Atom Model (CAM) and in the Split-Atom Model (SAM)

TABLE 3-Continued

Note. Here, $R 1$ is computed in terms of F, and $\mathrm{w} R 2$ is computed in terms of F^{2} and is thus more than twice $\mathrm{w} R 1$. Cell dimensions in hexagonal axes $a=b=3.4185(1) \AA, c=25.463(3) \AA$, cell volume $V=257.71(3) \AA(\operatorname{after}(1))$.
$U_{\text {eq }}$ displacement factor of Lu , although significantly lower than the value for the average structure reported in Isobe et al. (1), is still relatively high. The cause can be likely found in the statistical distribution of Lu between the two halfsites. The $U_{\text {eq }}$ displacement factor of $\mathrm{O}(1)$ is not significantly influenced by the model adopted, as could be foreseen from the fact that $\mathrm{O}(1)$ is not bound to the octahedral site. A relatively large value of the displacement parameter U_{33} of $\mathrm{O}(1)$ has been repeatedly reported for the compounds isostructural with $\mathrm{LuFeO}_{3}(\mathrm{ZnO})$ (e.g., (1, 3, 7)).

TABLE 4
Anisotropic Displacement Parameters $\left(\AA^{\mathbf{2}} \times \mathbf{1 0}^{\mathbf{3}}\right)$ for $\mathbf{L u F e Z n O} 4$

	Central-atom model (Lu at 0, 0, 0)						Split-atom model (Lu at 0, 0, z)					
	U11	$U 22$	U33	U23	U13	U12	$U 11$	U22	U33	$U 23$	U13	U12
Lu	4(1)	4(1)	49(1)	0	0	2(1)	4(1)	4(1)	23(1)	0	0	2(1)
$\mathrm{Fe} / \mathrm{Zn}$	7(1)	7(1)	11(1)	0	0	4(1)	7(1)	7(1)	10(1)	0	0	4(1)
$\mathrm{O}(1)$	14(1)	14(1)	35(3)	0	0	7(1)	15(1)	14(1)	28(2)	0	0	7(1)
$\mathrm{O}(2)$	13(1)	13(1)	13(2)	0	0	$6(1)$	12(1)	12(1)	12(1)	0	0	6(1)

Note. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U 11+\cdots+2 h k a^{*} b^{*} U 12\right]$.

DISCUSSION

In the accretional homologous series under consideration, the shape of the trigonal bipyramid of the first $K M$ sites $(K \geq 0$; the total number of M sites is $K+1)$ is more regular, with the three basal $M_{i}-\mathrm{O}_{i}$ bonds shorter than the $M_{i}-\mathrm{O}_{i+1}$ and $M_{i}-\mathrm{O}_{i-1}$ apical bonds. The shape of the M_{K+1} trigonal bipyramid is, however, distorted, with the $M_{K+1}-\mathrm{O}_{K+2}$ apical bond shorter than the three basal bonds $M_{K+1}-\mathrm{O}_{K+1}$, and approaches an irregular tetrahedron. This asymmetric coordination results in an anomalous CD for the cations. A few examples have been reported in which the trigonal bipyramid around the $(K+1)$ th site is more regular, with the three basal $M_{K+1}-\mathrm{O}_{K+1}$ bonds shorter than the apical $M_{K+1}-\mathrm{O}_{K+2}$ bond ($\mathrm{InFe}_{0.5}^{3+} \mathrm{Fe}_{1.25}^{2+} \mathrm{Si}_{0.25} \mathrm{O}_{4}(8) ; \mathrm{LuFeO}_{3}(\mathrm{ZnO})_{6}$ (1); $\mathrm{InGaZnO}_{4}$ (21)). Those structures do not show any significant anomaly in the cationic CD (21).

The unsatisfactory q / Q (cation) for the $m=1$ member suggests a displacement of the octahedral cation from the center of symmetry. This displacement has been reported for another sample with the same composition (4) and confirmed in the present study by a re-refinement adopting the split-atom model. When $m>1$ the effect of the geometrical distortion of the trigonal bipyramid around the M_{K+1} site likely results in a site preference of Zn and in the distribution of the trivalent cation in the other M sites, without necessity of displacing Lu from the center of symmetry. In fact, the structure refinement of the $m=4,5,6$ members did not reveal the same high displacement parameters for Lu that have been found for the $m=1$ member. The cation distribution could not be determined by structure refinement (1). The indications of the CD analysis for the higher members thus require confirmation from further experimental study.

From the $\mathrm{YbFe}_{2} \mathrm{O}_{4}$ structure (3) two different accretional homologous series can be derived, $\mathrm{YbFeO}_{3}(\mathrm{FeO})_{m}$, isostructural with the $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ series, and $\left(\mathrm{YbFeO}_{3}\right)_{n} \mathrm{FeO}$, of which members corresponding to $n=1$ (3), $n=2(22,23), n=3$, and $4(24)$ have been reported. Also
in this second series, the Yb is in octahedral coordination, and the Fe is in trigonal bipyramidal coordination. Only for the first two members, however, has single-crystal structure refinement been reported. The structure of two different samples of the $n=2$ member are available $(22,23)$. Within the limits of the quality of the structure refinements (the error was on the second decimal of the bond distances), those two samples have two different kinds of trigonal bipyramids for the Fe 2 site: one has the same kind of distortion reported for the $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ series and q / Q values similar to those reported here ($\mathrm{Yb}, 1.09$; $\mathrm{Fe} 1,0.93$; $\mathrm{Fe} 2,0.95$), whereas in the other case (23) neither such distortion nor such unsatisfactory q / Q values $(\mathrm{Yb}, 1.02 ; \mathrm{Fe} 1,0.96$; $\mathrm{Fe} 2,1.00$) are present (21).

For higher members of the accretional homologous series $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$ (isostructural with $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$) extra reflections in the selected area electron diffraction (SAED) pattern were reported (25-28), and were interpreted in terms of superspace group analysis (27). Transmission electron microscope (TEM) observations have revealed the existence of a modulation wave involving the octahedral cation (26-29). Correspondingly, the symmetry lowered to monoclinic and orthorhombic, respectively, instead of rhombohedral and hexagonal, respectively. The distortion of the trigonal bipyramids and its effect on the location of the octahedral cation, as shown in the present research, may play a significant role in the observed anomalies. It is, however, not clear why such anomalies are observed in higher members only. Structural studies of a larger number of members of these series, especially of higher members, are necessary to explain the features revealed by SAED/TEM studies.

ACKNOWLEDGMENTS

[^1]for assistance in implementation and usage of the PLATON software package. M.N. is indebted to Professor Giovanni Ferraris and Professor Gabriella Ivaldi (University of Torino, Italy) and to Prof. Emil Makovicky (University of Copenhaghen, Denmark) for discussions. The comments from two anonymous reviewers helped us in improve the clarity of the manuscript.

REFERENCES

1. M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, Acta Crystallogr. C 50, 332 (1994).
2. E. Makovicky, in "Modular Aspects of Minerals/EMU Notes in Mineralogy" (S. Merlino, Ed.), Vol. I, Chap. 5, p. 315. Eötvös University Press, Budapest, 1997.
3. K. Kato, I. Kawada, N. Kimizuka, and T. Katsura, Z. Kristallogr. 141, 314 (1975).
4. R. J. Cava, A. P. Ramirez, Q. Huang, and J. J. Krajewski, J. Solid State Chem. 140, 337 (1998).
5. R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, and K. Bernet, J. Less-Common. Met. 156, 105 (1989).
6. M. Nespolo, G. Ferraris, and H. Ohashi, Acta Crystallogr. B 55, 902 (1999).
7. M. Isobe, N. Kimizuka, J. Iida, and S. Takekawa, Acta Crystallogr. C 46, 1917 (1990).
8. R. Gérardin, A. Alebouyeh, F. Jeannot, A. Courtois, B. Malaman, and O. Evrard, Mater. Res. Bull. 15, 647 (1980).
9. B. Malaman, O. Evrard. N. Tannièeres, J. Aubry, A. Courtois, and J. Protas, Acta Crystallogr. B 31, 1310 (1975).
10. L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).
11. Yu. A. Pyatenko, Sov. Phys. Crystallogr. 17, 677 (1973).
12. I. D. Brown and R. D. Shannon, Acta Crystallogr. A 29, 266 (1973).
13. I. D. Brown and K. K. Wu, Acta Crystallogr. B 32, 1957 (1976).
14. I. D. Brown and D. Altermatt, Acta Crystallogr. B 41, 244 (1985).
15. I. D. Brown, in "Structure and Bonding in Crystals" (M. O'Keeffe and A. Navrotsky, Eds.), Vol. II, Chap. 14, p. 1. Academic Press, New York.
16. H. Neumann, Mineral. Mag. 28, 575 (1949).
17. N. Kimizuka and E. Takayama, J. Solid State. Chem. 40, 109 (1981).
18. K. Harms, "XCAD4, Program for the Lp-Correction of CAD4 Diffractometer Data." University of Marburg, Germany, 1996.
19. A. L. Speck, Acta Crystallogr. A 46, C34 (1990).
20. G. M. Sheldrick, "SHELX97, Program for the Solution and Refinement of Crystal Structures." University of Göttingen, Germany, 1997.
21. M. Nespolo, A. Sato, T. Osawa, and H. Ohashi, Cryst. Res. Technol., in press.
22. K. Kato, I. Kawada, N. Kimizuka, I. Shindo, and T. Katsura, Z. Kristallogr. 143, 278 (1976).
23. B. Malaman, O. Evrard. N. Tannièeres, A. Courtois, and J. Protas, Acta Crystallogr. B 32, 749 (1976).
24. N. Kimizuka, K. Kato, I. Shindo, I. Kawada, and T. Katsura, Acta Crystallogr. B 32, 1620 (1976).
25. N. Uchida, Y. Bando, M. Nakamura, and N. Kimizuka, J. Elec. Micr. 43, 146 (1994).
26. C. Li, Y. Bando, M. Nakamura, and N. Kimizuka, J. Elec. Micr. 46, 119 (1997).
27. C. Li, Y. Bando, M. Nakamura, M. Onoda, and N. Kimizuka, J. Solid State Chem. 139, 347 (1998).
28. C. Li, Y. Bando, M. Nakamura, and N. Kimizuka, J. Solid State Chem. 142, 174 (1999).
29. T. Hörlin, G. Svensson, and E. Alsson, J. Mater. Chem. 8, 2465 (1998).

[^0]: Note. Numbers in parenthesis below the chemical formula represent the fractional occupations of the M sites; $\sigma=\left[\sum_{i=1}^{N}\left(q_{i}-Q_{i}\right)^{2} / N-1\right]^{1 / 2}$ measures the deviation of the computed "charges" (Q) with respect to the formal oxidation numbers (q).
 ${ }^{a}$ Structures with distorted trigonal bipyramid $\left(M_{K+1}-\mathrm{O}_{K+2}<\right.$ $\left.M_{K+1}-\mathrm{O}_{K+1}\right)$.

[^1]: This research has been developed during a post-doctoral program (M.N.) supported by the Japan Science and Technology Corporation. We express our gratitude to Dr. Klaus Harms (Faculty of Chemistry, University of Marburg) for providing the XCAD4 data reduction program, and to Dr. Louis J. Farrugia (Department of Chemistry, University of Glasgow),

